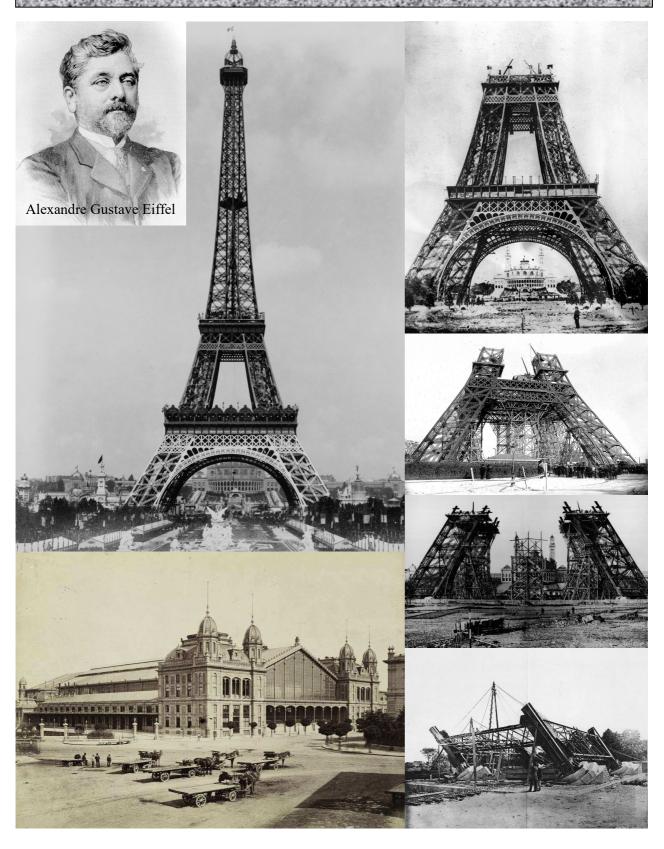
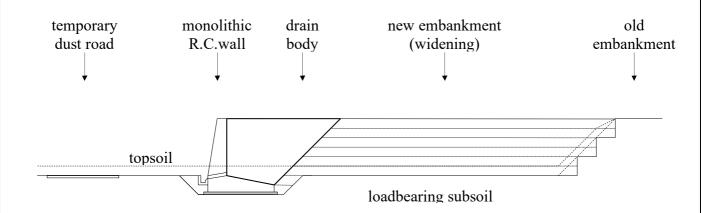
Thought-provoking Who had built it? What from? How? Why?


Thought-provoking Who had built it? What from? How? Why?

Thought-provoking Who had built it? What from? How? Why?



Thought-provoking Who had built it? What from? How? Why?

BASICS OF SCHEDULING

(planning – contracting – executing)

	Activity	y																1	Vo	rk	da	y			
ID	Name	Time	Resource	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Topsoil removal	2 d	1 bulldr																						
2	Step embankment	4 d	10 labr																						
3	Levelling	1 d	1 grader																						
4	Ditch excavation	2 d	1 excr																						
5	Blinding	3 d	5 labr																						
6	Formwork	3 d	2 carpr																						
7	Reinforcement	5 d	4 rodm																						

$$T = f(\S, \S, \lambda, \mu, \pi, ...)$$

§ : law & regulation

\$: financing

 λ : location

 μ : technology

 π : time period

PRE-TENDER REPORT

(Site Survey)

Systematic audit of all facts and factors at the site that may have great influence on accomplishment

Nature: Geology and Topography

Flora and Fauna (Environm.Prot.)

Watershed (Permanent, Seasonal)

Weather Conditions (Extremities)

•

Human: Nearby Municipalities, Agriculture

Local Laws and Regulations

Local Authorities (Permits, ...)

Local Customs (Holidays, ...)

Education (Communication, ...)

Location, Accessing the Site

•

Resource: Local Manufacturers and Suppliers

Local Labour Capacities

Local Mines, Pits, Deposits

Concurrents Local Projects

Transport Capacities

Accomodation Capacities

•

Time-estimates - Scheduling

problem solving by means of all technical sciences

ANALYSING

(breaking down the works, analysing components, ...)

SYNTHETIZING

(composing processes, assigning resources, ...)

MODELLING

(estimating, planning, proposing, programming, ...)

APPLYING

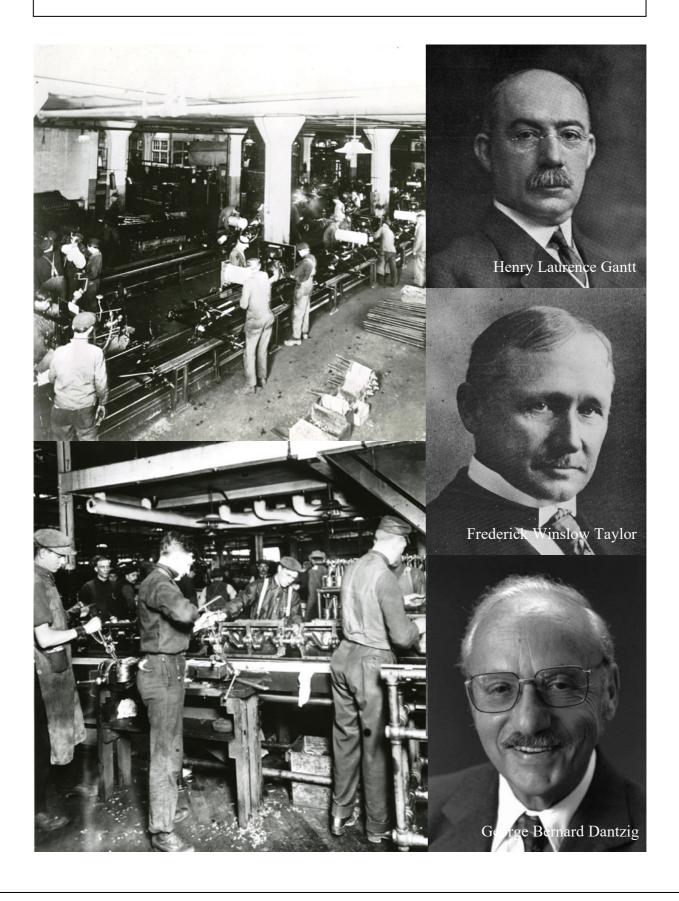
(contracting, introducing, executing, ...)

FEEDBACK

(measuring, monitoring, qualifying, ...)

CONTROLLING

(regulating, directing, adjusting, ...)


RECORDING (PUBLISHING)

(as-built drawings, building records, archives, ...)

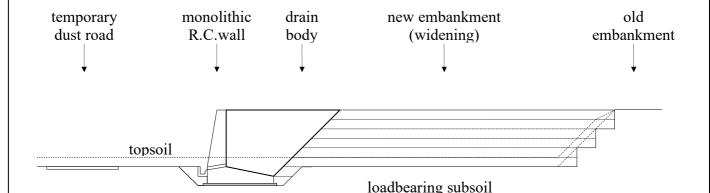
EVALUATING

(reviewing, adapting, updating, ...)

"Scientific Management" Production Management Models, Operations Research

Time Plans

- Models to promote finding adequate and co-ordinated endeavours to realize the intended (construction) projects
- Estimates, bases to support decision making in relation of would-be contracts of executing (construction) projects
- Legally referable appendices of written contracts stating agreed Schedules of deliveries of (construction) projects
- Baselines to measure against the timevariances when executing (construction) projects


It has no sense to speak about time plans without considering resources needed to execute the given (construction) projects

BREAKING DOWN THE WORKS (WBS)

- Decision Actuality / Circumstances
- Decision Level / Responsibility
- Time-span / Term
- Function / Delivery
- Structure / Unit
- Technology / Contracting
- Measurability / Controlling
- Division / Management
- :
- Experience / Database

typical/frequent, quantified, qualified, ..., accurately identified items with reference codes, structured

WORK BREAK-DOWN STRUCTURE (WBS)

01 Preparing the site

01-01 Cutting bushes and trees

01-03 Pre-liminary earthworks

01-03-02 Demolishing and depositing top soil

01-03-06 Stepping old embankment

01-03-09 Levelling the ground

01-08 Constructing temporary access road

01-18 Constructing temporary supply lines

03 Mass earthworks

03-03 Excavating foundation ditch

03-05 Refilling ditch by wall

03-06 Constructing embankment

03-07 Constructing filter body

03-09 Levelling the ground

07 Concrete works

07-01 Blinding

07-04 Concreting foundation slab

07-06 Concreting wall

07-32 Constructing dewatering channels

11 Wood works

11-04 Formworking foundation slab

11-04-02 Preparing formwork sheets

11-04-05 Assembling and supporting

11-04-11 Removing formwork

11-04-12 Repairing formwork sheets

11-06 Formworking wall

11-06-02 Preparing formwork sheets

11-06-04 Assembling and supporting internal formwork

11-06-06 Assembling external formwork

11-06-09 Scaffolding and supporting external formwork

11-06-11 Removing formwork

11-06-12 Repairing formwork sheets

17 Steel works

17-02 Pre-fabricating reinforcement

17-02-01 Cutting and bending

17-02-03 Transporting

17-02-05 Pre-assembling

17-04 Assembling foundation slab reinforcement

17-06 Assembling wall reinforcement

By Complexity: Production process (head of dep.) (responsibility) Building process (site engineer) Technology process (engineer)

Activity (foremen, groupleaders)

Motion (engineer + foremen)

RESOURCES

anything and everything that is needed ... and ... restricted in access

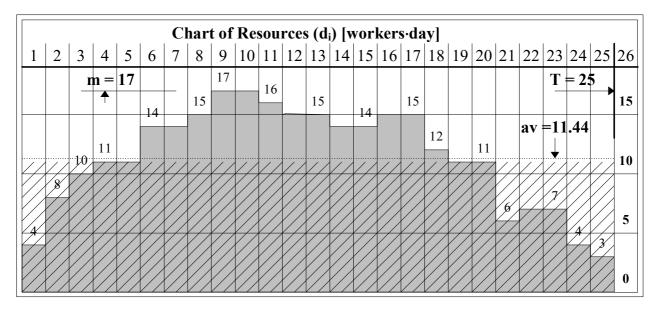
Material

- Construction material (earth, wood, metal, concrete, ...)
- Auxiliary structures (formwork, timber, scaffold, ...)
- Fuel (gas, petrol, electricity, ...)

Human

- Management (leadership, know-how, authority, ...)
- Skilled workers (mason, steel-fitter, carpenter, plumber, ...)
- Labourers (unskilled, universal, trained workers, ...)

Equipment


- Heavy equipment (excavator, bulldozer, crane, truck, ...)
- Auxiliary machinery (mixer, floater, finisher, pump, ...)
- Power tools (cutter, drill, welding set, pin vibrator, ...)

Time Area

Money

RESOURCE MANAGEMENT

Capacity-typed (not storable) resources

$$W = \sum_{i=1}^{T} d_i = \sum_{i=1}^{25} d_i = 286$$

$$av = \frac{W}{T} = \frac{286}{25} = 11.44$$

$$W = \sum_{i=1}^{T} d_i = \sum_{i=1}^{25} d_i = 286 \qquad av = \frac{W}{T} = \frac{286}{25} = 11.44 \qquad k = \frac{m}{av} = \frac{17}{11.44} \approx 1.486$$

W = total work performed [workers·day]

T = total execution time [day]

 $d_i = daily work performed [workers \cdot day]$

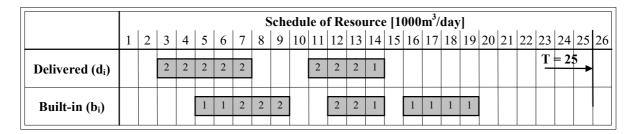
i = day index

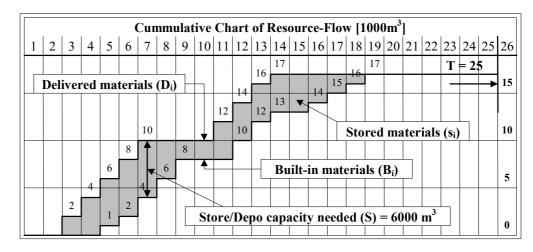
av = average of workers employed a day [workers]

m = maximum of workers employed a day [workers]

k = resource variency indicatrix

e.g.:


- Labour
- Equipment
- Electricity


Loss in utilization can not be recovered

(Efficiency has great importance)

RESOURCE MANAGEMENT

Stock-typed (storable) resources

$$\mathbf{D}_{\mathbf{i}} = \sum_{\mathbf{j}=1}^{\mathbf{i}} \mathbf{d}_{\mathbf{j}}$$

$$\mathbf{B}_{\mathbf{i}} = \sum_{\mathbf{i}=1}^{1} \mathbf{b}$$

$$s_i = D_i - B$$

$$S = \max_{i} \{ s_i \}$$

$$i = 1,2, ...,T$$

 D_i = cummulated amount of resource delivered by the day "i" $[m^3]$

i, j = day indices

 B_i = cumulated amount of resource built-in by the day "i" [m³]

 s_i = amount of resource to be stored on the day "i" [m³]

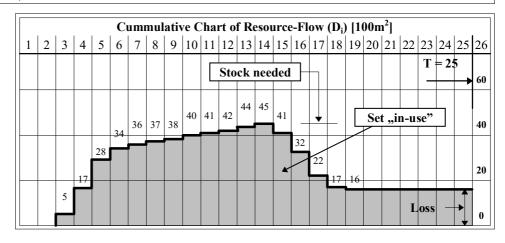
S = store/depo capacity needed

 d_i = amount of resource delivered on the day "i" [m³]

 b_i = amount of resource built-in on the day "i" $[m^3]$

e.g.:

- Material
- Structure
- Fuel


Transport and storage has great importance

(Top-time delivery can save money)

RESOURCE MANAGEMENT

Stock-typed (reusable) resources

	Activity		Schedule of Resource Use (a _{ki}) [100m ² /day] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26																								
ID	Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
1	Internal formwork			5	5	5	5	5	5	5	5	5	5	5	5									T:	= 25	5	
2	External formwork				6	6	6	6	6	6	6	6	6	6	6	6											
3	Partitioning formwork				1			1			1			1			1										
4	Remove internal formw.						-5	-4	-5	-5	-4	-5	-5	-4	-5	-5	-4	-5									
5	Remove external formw.							-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5	-5								
6	Remove partit. formw.							-1			-1			-1			-1			-1							

$$d_i = \sum_{k=1}^{n} a_{ki}$$

$$D_i = \sum_{j=1}^i d_j$$

$$S = \max_{i} \{D_i\}$$

$$i = 1,2, ...,T$$

 a_{ki} = set of resource assigned to (used at or produced by) activity "k" on day "i" [m²]

i, j = day indices

 d_i = increment of set "in-use" on the day "i" $[m^2]$

k = activity index

 $D_i = \text{set ,in-use}$ " on the day ,i" [m²]

n = number of activities

S = necessiated set (stock) of resource [m²]

T = total execution time [day]

e.g.:

- Top-Soil / Plantage
- Earth / Rubbish
- Auxiliary / Temporary Structures

Minimal loss (savings) has great importance

(Environment protection has preference)

STANDARDS

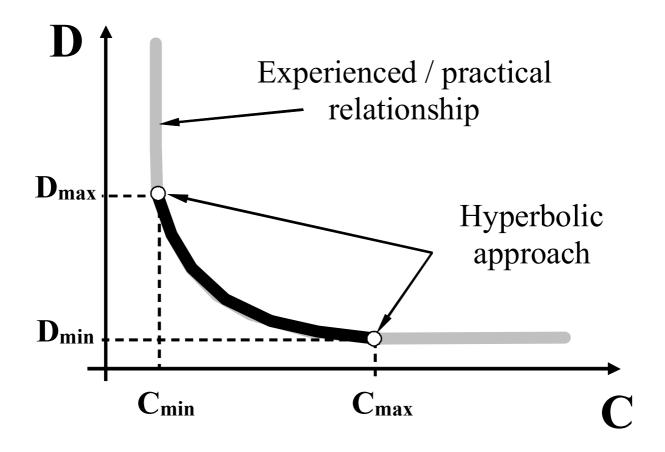
Ways of establishing Standards

- Statistical analysis (bulk processing)
- Technical analysis (estimates)
- Hystorical analogies (comparision)
- Measuring performance (timing)

Basic types of Standards

- Performance standard [time/unit] (h/m³, h/to,..)
- Standard output [unit/time] (m³/h, to/h, pcs/h,..)
- Material standard [volume/unit] (m³/pc,..)
- Storage standard [volume/area] (pcs/m²,..)
- Cost standard [cash/unit] (\$/pcs, \$/to, \$/m²,..)

Adjusting Standards


- *l*<1: Location factor (disadvantageous access) (position of equipment can not be optimal)
- *t*<1: Time efficiency factor (too much time loss) (much time to spend for technical breaks)

...: ...(...)

r<1: Resource factor (unfavorable material) (*gluey or hard soil, sensitive structure*)

$$N_{\text{eff}} = N_{\text{stnd}} \cdot l \cdot t \cdot \dots \cdot r$$

CAPACITY v. DURATION

V : volume [unit] (of product)

n : performance [time/unit] (for a unit resource – labour)

N: output [unit/time] (for a unit resource - equipment)

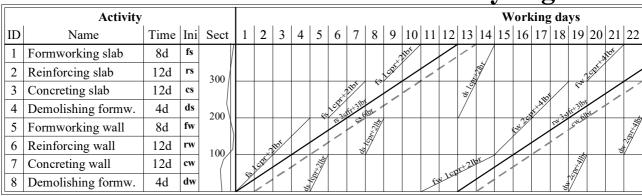
W: work [time] (for a unit resource)

C: capacity [unit] (allocated resource units)

D: duration [time] (for resource units allocated)

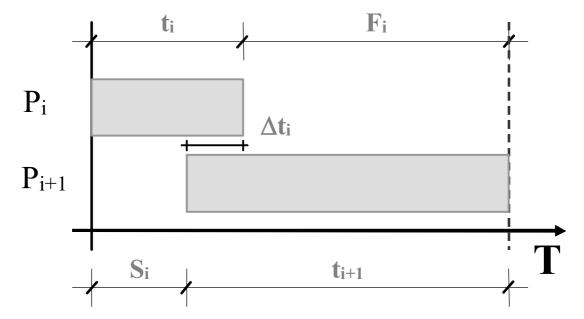
$$W = \frac{V}{N}$$
 $W = V \cdot n$ $D = \frac{W}{C}$

SCHEDULE REPRESENTATIONS

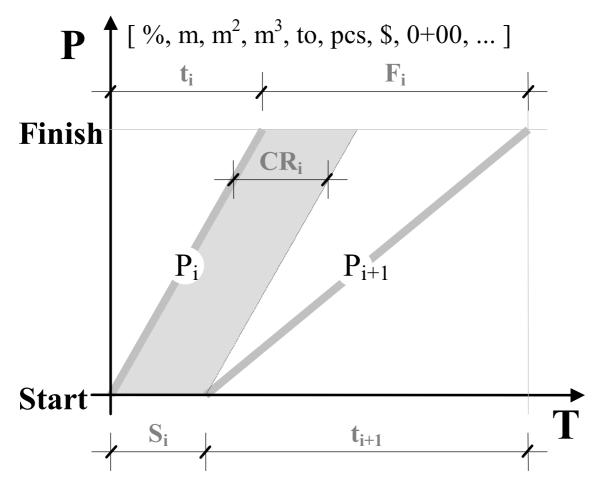

α-numeric – Tabular - Timetable

	Activity		Schedul	e	Resource		Damaula	
ID	Name	Time	Start	Finish	Crew	Machine	Cost	Remark
1	Demolish top soil	2d	02.03.1998	04.03.1998		1 bullr	£250	Depo. on site
2	Stepping old slope	4d	03.03.1998	06.03.1998	10 labr		£900	h = 1m
3	Levelling ground	1d	05.03.1998	05.03.1998		1 gradr	£200	
4	Excavating ditch	2d	06.03.1998	09.03.1998	3 labr	1 excr	£430	15% by labr
5	Blinding	3d	09.03.1998	11.03.1998	5 labr		£530	
6	Formworking	3d	11.03.1998	13.03.1998	2 carpr		£850	
7	Reinforcement	5d	11.03.1998	17.03.1998	4 steelfr		£1410	prefabr. 35%

1Dimensonal – Bar Chart – Gantt Chart

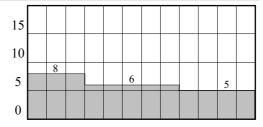

	Activity																	W	ork	cing	da	ys		_	
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22
1	Demolish top soil	2d	1 bullr																						
2	Stepping old slope	4d	10 labr																						
3	Levelling ground	1d	1 gradr																						
4	Excavating ditch	2d	1 excr																						
5	Blinding	3d	5 labr																						
6	Formworking	3d	2 carpr																						
7	Reinforcement	5d	4 steelfr																						

2Dimensional – Linear Schedule - Cyclogram

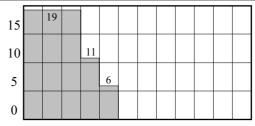


Graphic Representations

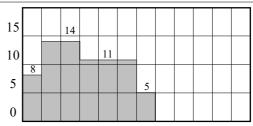
1D - Bar Chart - Gantt Chart

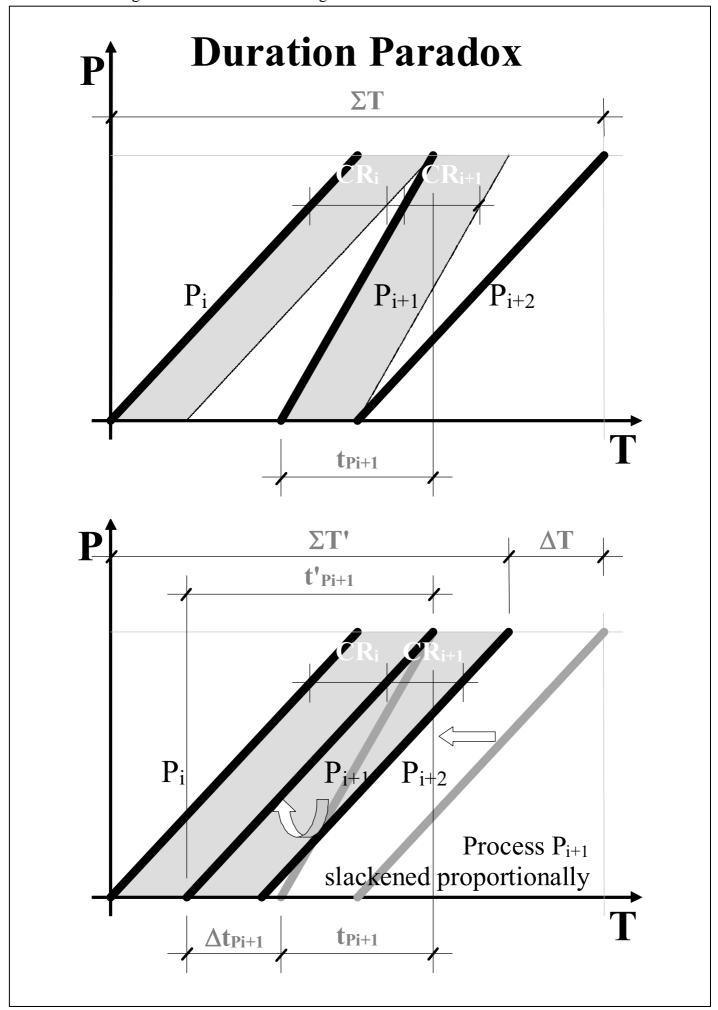

2D – Linear Schedule – Cyclogram

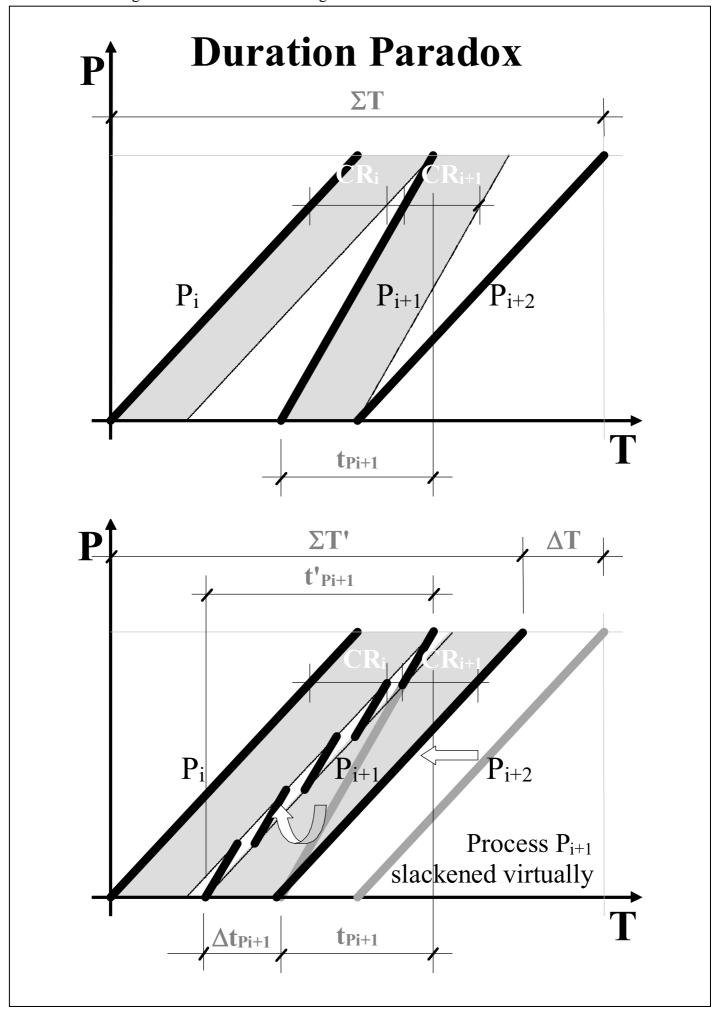
RELATIVE TIMING


Consecutive Relations

	Activi	ty						S	che	dul	e				
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr						6						
3	Reinforcement	4d	5 steelfr										4	5	

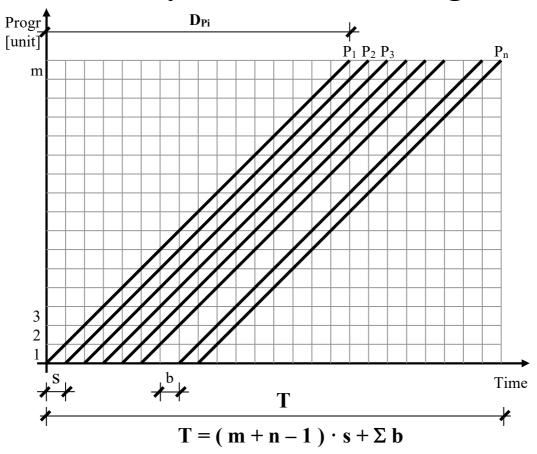

Parallel Relations


	Activi	ty						S	che	dul	le				
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr			6									
3	Reinforcement	4d	5 steelfr		4	5									



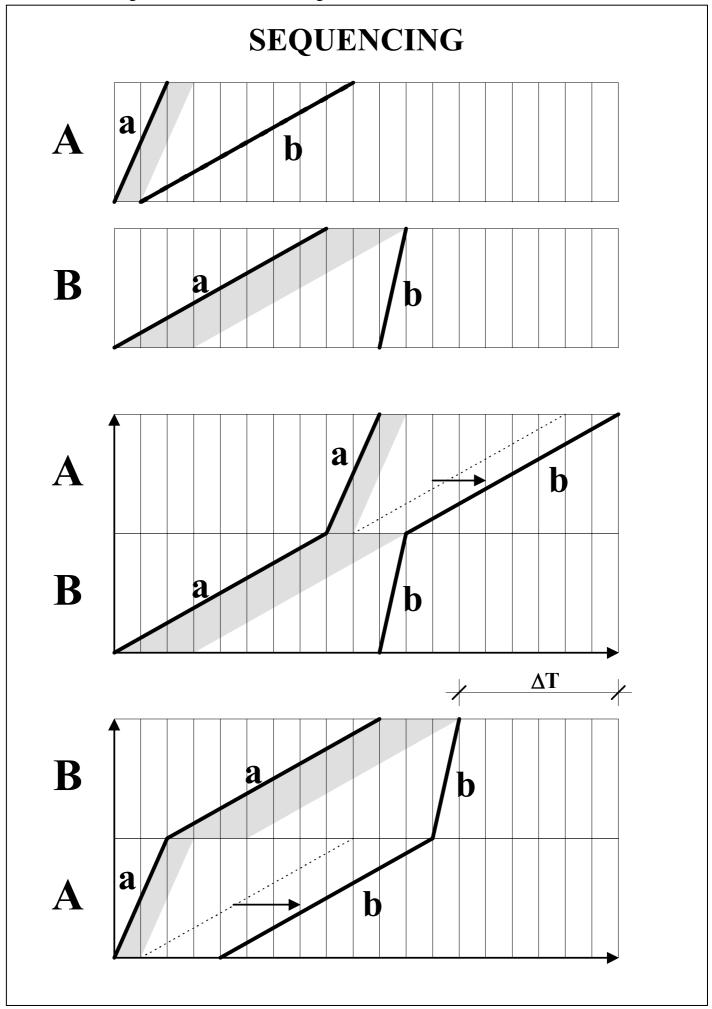
Overlapped Relations


	Activi	ty						S	che	dul	le				
ID	Name	Time	Crew	1	2	3	4	5	6	7	8	9	10	11	12
1	Excavate ditch	3d	8 labr		8										
2	Formworking	5d	6 carpr				6								
3	Reinforcement	4d	5 steelfr					4	5						


Top Effectivity: The Synchronized Belt(Mass Production)

Synchronization

(the ultimate parallels)


U.S.: Ford, Model-T, Mass Production "Belt-System Manufacturing"

Historical Relations

Belt-System Construction / Industrialization After-War (II) Reconstruction (Lack of Resources / Bulk of Needs)

Typical: Linear structures, Infrastructure (highway, railway, public utilities, etc.)

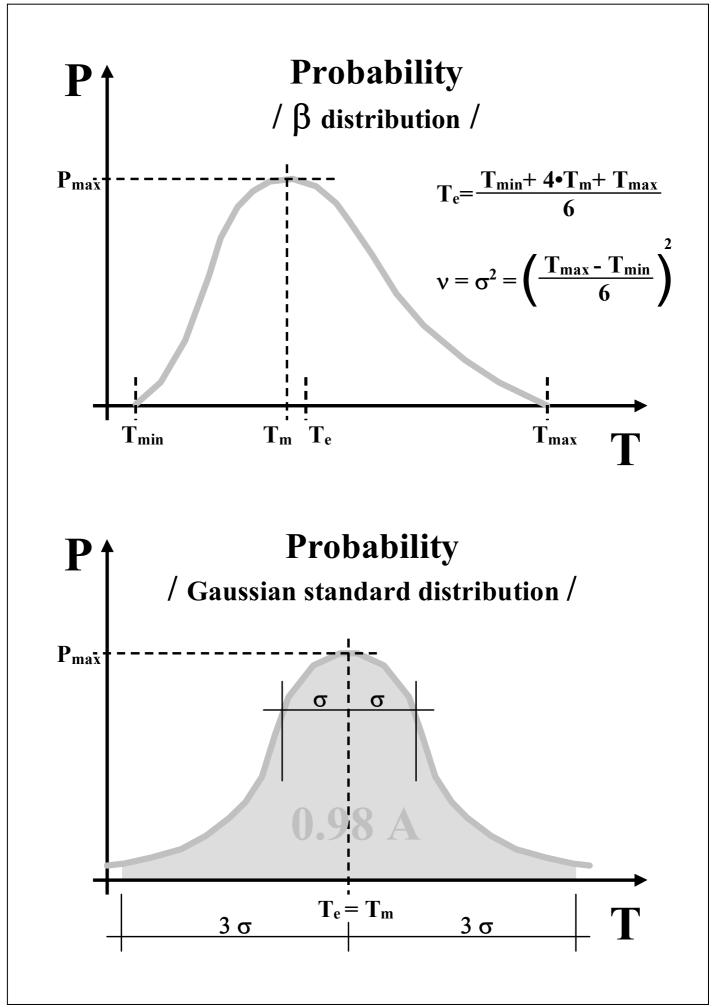
Dynamic Time-Models Scheduling Networks

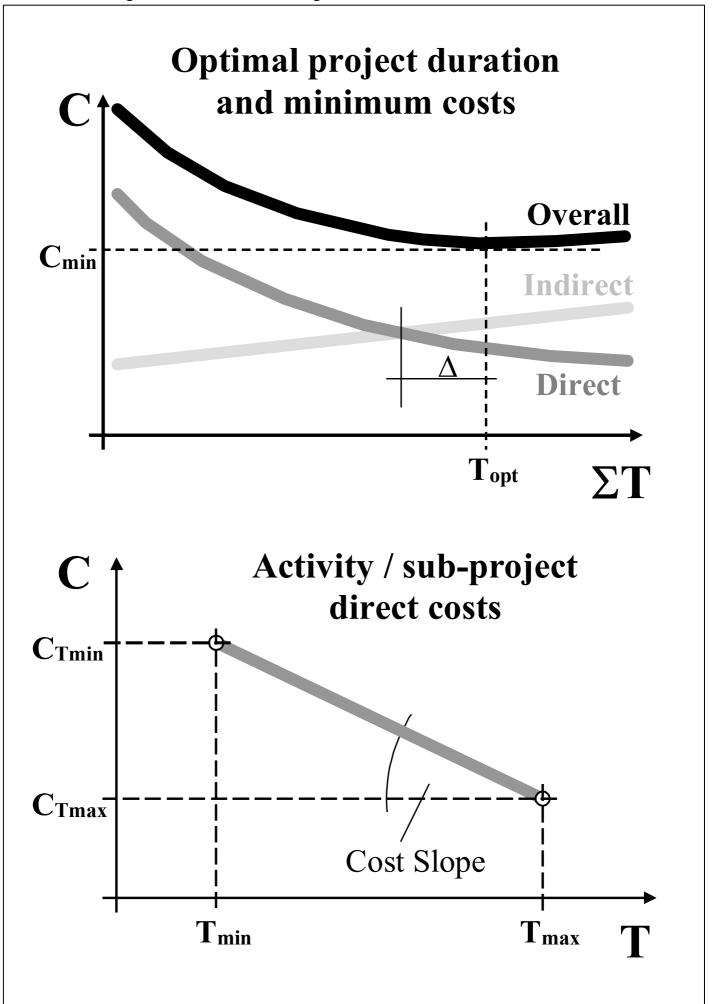
Analogies in Graph-techniques and Applied Mathematics

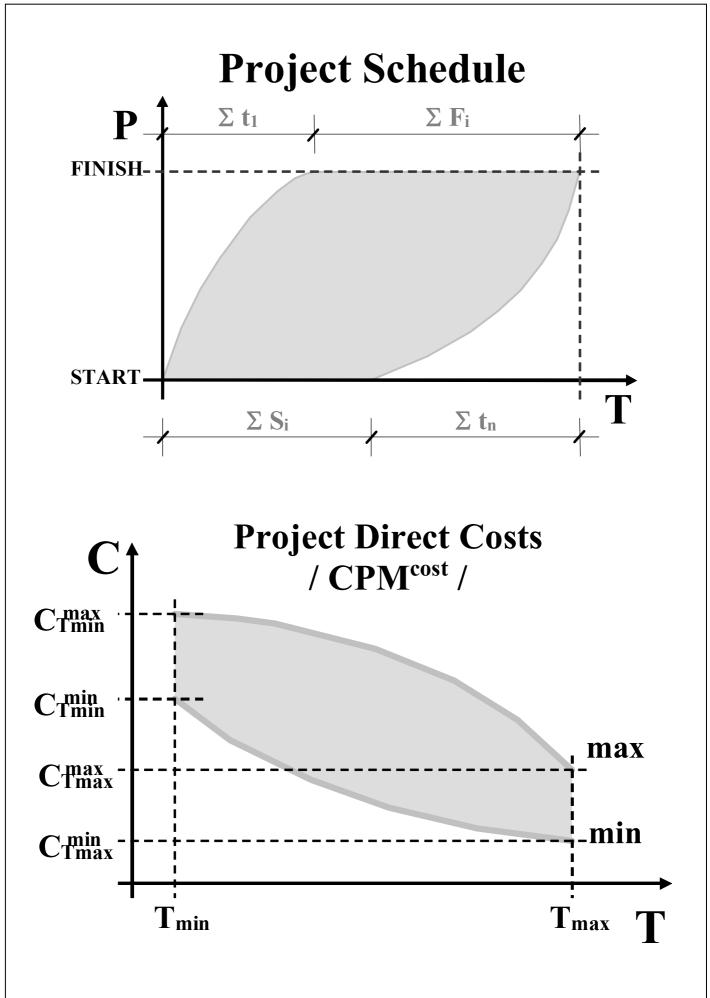
- The Longest Path Problem
- Potentials' Problem (Linear Programming)

(All components should be involved. We look for the dominant flows of activities and track the potential consequences of eventual changes)

Network techniques


(differing correspondences and joint algorithms)


- PERTtime
- CPM^{time}
- CPM^{cost}
- CPM^{ladder}
- MPM^{time}/PDM^{time}
- MPM^{cost}
- GTM (General Time Model)


Construction Management / Basics of Scheduling 27 / 30e.g. an MPM time-model Right Left Left Right pier pier abutment abutment Preparing the site 0 2 SS0 SS₀ SS0 SS0 10 20 Deep foundation 0 0 10 10 20 FS0 FS0 FS0 FS0 5 17 FS0 20 25 6 12 12 Flat foundation 3 3 15 0 25 3 20 20 15 FS5 FS5 FS5 FS0 FS5 FS0 16 24 FS0 30 32 17 22 11 5 Vertical structure 18 23 28 6 30 30 32 23 28

Horizontal structure

Slab + Finishes

